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Abstract

Background—Pooled viral load (VL) testing with two different testing strategies was evaluated 

as a potential cost-saving method to monitor antiretroviral therapy (ART) in HIV-infected children 

receiving ART in a resource-limited setting.

Methods—Archived samples collected from 250 HIV-1 infected children on first-line ART at 

various time-points post-ART initiation were evaluated for pooled VL testing using a minipool

+algorithm strategy. Additionally, samples collected in real-time from 125 children on ART were 

assessed for virologic failure using a minipool strategy for pooled viral load testing. Virologic 

failure was determined as HIV-1 RNA viral loads >1500 copies/ml.

Results—Minipool+algorithm strategy for pooled VL testing of archived samples had estimated 

viral failure of 13.6%, with a relative efficiency (RE) of 23.6% (95% CI; 18.5, 29.4), and negative 

predictive value (NPV) of 88%. This testing strategy would have resulted in 24% fewer assays 

needed, for a cost savings of $1,180 per 100 samples. The minipool strategy for pooled viral load 

testing of samples obtained in real-time yielded an estimated 23.2% of samples with viral failure 
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and a RE of 8.0 % (95% CI; 3.9, 14.2); however had a minipool+algorithm pooling strategy been 

used the RE would increase to 20%.

Conclusions—The minipool+algorithm strategy for pooled VL testing to detect virologic failure 

in HIV-1 infected children on ART was determined to be relatively efficient in detecting virologic 

failure, had high NPV, with substantial cost savings. Pooling strategies may be important 

components of cost-effect strategies to reduce rates of viral failure and resistance, thus improving 

clinical outcomes.

Introduction

Of the estimated 2.2 million HIV-1 infected children globally, over 90% reside in Africa. A 

global response to provide drug treatment has resulted in an unprecedented scale-up in the 

access to antiretroviral therapy (ART) in Africa. In Kenya approximately 24% of HIV-1 

infected children were receiving ART in 2010, most of whom were on first-line ARV 

therapy1. HIV-infected children have substantially higher viral loads than adults and 

consequently take longer to suppress after ART initiation2–6. Two recent separate meta-

analyses found that between 20% and 40% of children in Sub-Saharan Africa had 

incomplete viral suppression after 12 months on ART, which raises concerns regarding 

durability of first line ART regimens in children7, 8.

Current monitoring of response to ART in resource-limited settings is based on clinical and 

immunologic criteria and does not include viral load (VL) testing due to its high cost9–13. 

The WHO-based clinical and immunologic criteria for detecting virologic failure has low 

sensitivity: adult studies in developing countries have reported sensitivity rates of 12% – 

17%, and a recent pediatric study in Tanzania found a sensitivity rate of 3.5%14–18. A recent 

study in children on ARV therapy, aged between 24–84 months in South Africa found that 

virologic monitoring improved the sensitivity and predictive values for detecting virologic 

failure, compared to use of immunologic criteria alone19. A WHO survey in high HIV 

burden countries found 98% of children on first-line ART regimens with only 3% of 

children receiving second-line regimens20. The main reason for low usage of second-line 

regimens is failure to diagnose treatment failure promptly due to lack of regular virologic 

testing21.

Moreover, studies in resource-limited settings have reported high rates of drug resistance at 

the time of virologic failure3. Patients in programs that are not routinely monitored for VL 

had higher levels of resistance which compromise efficacy of currently recommended 

second-line regimens14, 15, 17. Among patients with faltering adherence, in addition to 

enhanced counseling, targeted VL testing may conserve first line ART by differentiating 

those with and without true virologic failure. Previous studies in adults have shown that 

targeted counseling in patients with detectable viral breakthrough resulted in a 3% to 5% 

drop in switching of patients to second line ART, thus promoting retention of first-line 

regimens10, 11. Infrequent monitoring of VL is commonly associated with delayed switch to 

second line ART regimens leading to accumulation of ARV resistance mutations and 

potential for poor outcomes of ART. A large multi-country study in adults found that use of 
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VL testing led to decisions to switch subjects to second-line treatment that are made earlier 

and at higher CD4 counts and may translate to better clinical outcomes16.

These factors highlight an urgent need to find cheaper technologies and strategies for VL 

testing and more cost-effective strategies for utilizing available technologies. While 

development of cheaper VL testing is desirable, progress to decrease VL test costs has been 

slow and unit cost of virologic testing remains about US $50 per test, which rules out the 

possibility of individual VL testing in many program settings.

Strategies of pooling specimens for testing were developed to decrease the cost of testing by 

reducing the number of tests required, and were initially used for detecting acute HIV 

infection among blood donors with a negative antibody test in areas where HIV prevalence 

is typically low (range 1% –30%)22–24. Several researchers have evaluated pooled sample 

viral testing strategies for detection of virologic failure in patients on ART. In studies 

conducted among populations of varying prevalence of ART failure, different cut-offs to 

define virologic failure have been evaluated25–27. These studies have shown that pooled VL 

testing can decrease the cost of virologic monitoring especially in populations with low 

prevalence of virologic failure25, 26. Strategies including minipool, minipool+algorithm and 

matrix have been described and evaluated to detect virologic failure using pooled samples25. 

Under these strategies, pools of individual samples are prepared for initial testing and 

compared against pre-defined viral detection thresholds; following viral detection above 

threshold of a given pool, varying approaches are then used to test individual samples.

The use of pooled VL testing of blood samples collected in real-time, to monitor ART 

failure, particularly from HIV-1 infected children on ART in low-resource settings have not 

been fully evaluated. This study describes the evaluation of minipool and minipool

+algorithm strategies for pooled VL testing to detect virologic failure in children receiving 

ART in Kenya.

Materials & Methods

Study Population

Two source populations of HIV-1 infected children on ART were evaluated: (i) Archived 

samples collected previously from a research cohort of HIV-1 infected children on ART, 

and (ii) Real-time samples collected from HIV-1 infected children on ART in routine 

follow-up at the HIV clinic in the same hospital.

Archived Samples Cohort—The study used archived blood plasma specimens that were 

previously collected from HIV-1 infected children enrolled in an ongoing study on Long-

term Efficacy of Pediatric ART in Nairobi, which has been described previously6, 28, 29. 

Briefly, in this prospective, observational study HIV-1 infected children at Kenyatta 

National Hospital (KNH) were recruited between the years 2004 – 2006. Children aged 18 

months to 15 years were enrolled in the study if they presented with advance disease (WHO 

clinical stage 3–4) or CD4% <15%, and were ART naïve. Children were initiated on first-

line ARV regimens in tandem with National Guidelines: two nucleoside/nucleotide reverse 

transcriptase inhibitors (NRTIs) plus one non-nucleoside reverse transcriptase inhibitor 
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(NNRTI), except for those with pulmonary tuberculosis co-infection who were initiated on a 

regimen consisting of three drugs of the NRTI class. Following ART initiation, children 

were followed prospectively at monthly intervals during the first year and quarterly 

thereafter. At each clinic visit, information about medical illness and self-reported ART 

adherence was collected and complete physical examination including anthropometry was 

performed. Blood samples were collected at baseline and every 6 months thereafter to 

monitor immunologic response and drug toxicity. Response to ART was monitored using 

clinical (growth, opportunistic infection) and immunologic parameters.

Blood plasma samples were collected in duplicate: one sample was stored at −80°C while 

the other sample was previously tested for HIV-1 RNA VL using Gen-Probe HIV-1 Viral 

Load Assay (San Diego, CA), which has been validated for detection of HIV-1 subtypes 

prevalent in Kenya30. Stored frozen plasma were available for the present study for pooled 

VL testing, and 50 samples were selected at random from each of five time-intervals post-

ART initiation. The study received approval from the Kenyatta National Hospital and 

University of Washington IRB ethical review boards.

Real-time Samples Cohort—Plasma samples were obtained from HIV-infected children 

on ART enrolled in a PEPFAR-supported KNH treatment program in the same 

comprehensive HIV care clinic but not from participants in the previous study described 

above. Children were initiated on treatment between 2005 and 2011 according to the then 

existing Kenyan National Guidelines. Before 2007 the criteria was similar to that used for 

the archived samples (advanced disease (WHO clinical stage 3–4) or CD4% <15%) while 

after 2007 the national guidelines were adjusted to reflect age-specific CD4 criteria. Thus, 

for children < 5 years of age, CD4 percentage < 20% qualified for HAART initiation while 

those above 5 years of age the corresponding CD4 percentage threshold was 15%. 

Following ART initiation, children were monitored monthly for the first 6–12 months and 

quarterly thereafter. ART monitoring in the children was based on WHO-based clinical 

criteria (intercurrent illness, growth and development) and immunologic criteria (CD4 count 

and percentage). Prescriptions for ART were refilled every 1–3 months and information on 

adherence, toxicity and drug switches was recorded. HIV-1 RNA VL testing was not 

routinely done except for suspected treatment failure.

A total of 125 eligible children attending the clinic during the period between June and 

August 2011 were selected for pooled VL testing. Children initiated HAART between 

August 2005 and January 2011. A baseline venous blood sample was obtained from the 

child and he/she was given an appointment to return to the clinic after 2 weeks for VL 

results. If VL above 1500 copies/ml was detected (suggesting virologic failure), clinical and 

immunologic (e.g. CD4+ T cell count and percentage) assessments of failure were 

performed. For children with possible clinical, immunologic and virologic failure, a 

confirmation re-bleed sample for VL testing was requested. If the re-bleed sample had VL 

results above 1500 copies/ml, HIV viral resistance tests were performed to confirm 

treatment failure before switching to a second-line treatment.
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Approval of the present study was obtained from the KNH ethical review board. Informed 

consent for study participation was obtained from a parent or caregiver, and verbal assent 

was acquired for children above 8 years as per Kenya national guidelines.

Preparation of Pools for HIV-1 RNA VL Testing

Pools of either archived samples or samples obtained in real-time were prepared in the 

laboratory using 5 individual samples per pool (Figure 1). For the pools an approximate 

volume of 600 ul of pooled plasma was prepared, using 125 ul from each of the 5 individual 

samples. All pools and individual samples were coded and all staff involved in sample 

preparation or VL testing using pooled methods were blinded to the child’s previous VL 

results. Samples were tested for HIV-1 RNA VL using a commercial Abbot™ Real-Time 

HIV-1 Assay, which has a lower limit of detection of 50 copies/ml (and a standard deviation 

of 0.25). Virologic failure was defined as HIV-1 RNA greater than 1500 copies/ml.

Minipool+algorithm Strategy for Pooled VL Testing of Archived Samples

Pools of archived samples were prepared based on time of sample since ART initiation. 

Under a minipool+algorithm strategy if the VL result of the pool was less than 300 

copies/ml, then it was assumed that all five individual samples in the pool had VL ≤1500 

copies/ml (Figure 1). If the VL result of the pool was greater than 300 copies/ml, individual 

samples in the pool were tested sequentially; individual results (divided by the pool size) 

were subtracted from the pool VL estimate, until the threshold value was reached (≤300 

copies/ml). Hence, the remaining samples in the pool that had not been tested individually 

were assumed to be below the cut point defining virologic failure (<1500 copies/ml). One to 

two pools were prepared and tested per week. Implementation of this testing strategy 

required waiting for results from individual samples and depended on the number of 

individual samples tested; time for testing varied from 5 to 20 days.

Minipool strategy for Pooled VL Testing of Samples Obtained in Real-time

For testing of plasma samples obtained in real-time, the minipool strategy was evaluated 

because results were needed in real-time for monitoring of virologic failure and this strategy 

has a shorter turn-around time than the minipool+algorithm strategy.

Under this minipool strategy, if the VL result for the pool was <300 copies/ml then it was 

assumed that all individual samples had VL below 1500 copies/ml; while if the VL results of 

the pool were >300 copies/ml then all individual samples in the pool were tested (Figure 1). 

About one to two pools were prepared and tested per week, based on the volume of clinic 

attendance. Time for testing varied from 5 to 10 days.

Statistical Analysis

Relative Efficiency of Pooled VL Testing Strategies —Relative efficiency (RE) of 

each strategy was defined as one minus the number of assays performed divided by the 

number of samples25, and thus determines the percentage of assays saved by the pooling 

strategies compared with individual testing of all samples. A relative efficiency of zero has 

no advantage over individual testing while a relative efficiency of 50% uses half as many 

samples as individual testing. As reported by May et al25, an increased RE is function of 
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decreased prevalence of virologic failure in the population and the number of individual 

samples comprising a pool. Exact binomial 95% confidence intervals of relative efficiency 

were also calculated.

Negative Predictive Value of Pooled VL Testing Strategy—Negative predictive 

value (NPV) was calculated for the minipool+algorithm strategy for pooled testing of 

archived samples, as individual results were available from a previous analysis6. NPV 

represents the percentage of samples that truly do not have virologic failure under individual 

testing, among those samples determined to not have virologic failure by the pooling 

strategy. A high NPV indicates that most subjects determined to not have virologic failure 

by a testing strategy will be confirmed by individual testing.

All analyses were performed using Stata Intercooled v9.2 (College Station, StataCorp).

Results

Cohort Characteristics

Two hundred and fifty archived plasma samples were obtained from 100 children who 

participated in the Long-term Pediatric HAART efficacy cohort. At ART initiation children 

had a median age of 4.7 years (inter-quartile range (IQR), 2.7–6.6 years) and were initiated 

on first-line ART regimens (64 on nevirapine-containing regimens, 32 on efavirenz-

containing regimens, and 4 on triple NRTI regimens) (Table 1). Children had a median 

follow-up of 3 years (range 4–7 years). Archived blood samples collected within the 

following time intervals post ART initiation were available: 94 samples at 6 months, 86 

samples at 15 months, 85 samples at 27 months, 77 samples at 45 months and 55 samples at 

57 months. For the present study, 50 samples from each of the intervals were included, 

contributing a total of 250 samples collected from 100 children (Table 2). One sample was 

later determined to fall out of the desired range, and was excluded from examinations by 

time interval. Each child contributed a median of 3 samples (IQR, 2–3).

Samples obtained in real-time were collected from 125 children. Children had a median age 

of 5.9 years (IQR, 4.0 – 7.9 years) and were on the following ART regimens at the time of 

sample collection: 64 on nevirapine-containing regimens, 58 on efavirenz-containing 

regimens, 2 on ritonavir-boosted lopinavir containing regimens, and one on a triple NRTI 

regimen (Table 1). At the time of sample collection, children had been on ART between 4 

and 72 months: one child between 4–6 months, 24 between 6 months to one year, 33 

between 1–2 years, 23 between 2–3 years, 31 between 3–4 years, 9 between 4–5 years and 4 

between 5–6 years.

Relative Efficiency and Virologic Failure of Minipool+algorithm Strategy for Pooled VL 
Testing of Archived Samples

Overall, the minipool+algorithm strategy for pooled VL testing of archived samples had 

relative efficiency of 23.6% (95% CI, 18.5–29.4). A total of 34 (13.6%) of 250 samples 

were determined to have virologic failure (VL >1500 copies/ml). Relative efficiency was 

highest among samples collected either at 6 months, 1–2 years or 4–5 years post-ART, with 

relative efficiencies ≥30% (Table 2). Overall, 59 individual samples did not require 
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individual testing. Based on the current local cost of $50 per test, the program thus would 

have saved $2950 for the testing of 250 samples, or $1,180 per 100 tests.

Negative Predictive Value of Minipool+algorithm Strategy for Pooled VL Testing of 
Archived samples

Of the 216 archived samples determined to have VL <1500 copies/ml under a minipool

+algorithm strategy, 179 samples had individual results from a prior analysis. A total of 158 

samples were confirmed below threshold yielding overall NPV of 88% (95% CI, 83–93) 

(Table 3). Of the 21 samples that the strategy misclassified as VL < 1500 copies/ml, one 

sample was misclassified at the initial pool stage and 20 samples were misclassified at the 

individual, sequential testing stage.

Relative Efficiency and Virologic failure of Minipool Strategy for Pooled VL Testing of 
Samples Obtained in Real-time

For the minipool strategy for pooled VL testing of samples obtained in real time, overall 

relative efficiency was 8.0% (95% CI, 3.9–14.2) (Table 4). Ten samples did not have to be 

tested and thus the program would have saved only $500, or $400 per 100 tests. A total of 

29 (23.2%) of 125 children were found to have virologic failure (VL >1500 copies/ml). Of 

the 29 children, only 14 children met the additional clinical and/or immunologic criteria for 

classification of failure, and of those 9 were available for re-bleed and resistance testing; of 

these, 6 children were identified with ART resistant mutations indicating treatment failure.

Had the minipool+algorithm strategy been used for pooled VL testing of this samples 

obtained in real-time, estimated virologic failure would have decreased to 18.4% and RE 

would have increased to 20.0%.

Discussion

We analyzed pooled HIV-1 viral load testing using two strategies, the minipool and 

minipool+algorithm strategies, as has been described earlier25. We observed that pooled VL 

testing using a minipool+algorithm strategy was a more efficient and cost-saving strategy 

compared to use of a minipool strategy.

For archived samples using a minipool+algorithm strategy, we observed virologic failure of 

13.6% and relative efficiency of 23.6%. According to simulations done by May & others25, 

for a population with prevalence of virologic failure of about 13–14%, standard deviation of 

the assay of 0.12, and a minipool+algorithm strategy with pool size of 5, relative efficiency 

would be estimated at about 40–45%. However, use of an assay with standard deviation of 

0.25 like the Abbot™ Real-Time HIV-1 Assay used here may result in a somewhat lower 

RE, perhaps in the range of what we have observed. NPV was high at 88%, and cost savings 

would have been substantial at $1,180 per 100 tests.

We selected the minipool VL testing strategy to monitor virologic failure of samples in real-

time from children attending an ART clinic. We found the minipool testing strategy to have 

RE of 8% and not particularly cost-saving. However, had we subjected the same samples to 

a minipool+algorithm testing strategy relative efficiency would have increased to 20%. Thus 
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we observed that pooled VL testing using the minipool+algorithm was a more efficient and 

cost-saving strategy compared to minipool. It should be noted that due to the differing 

strategies of testing individual samples within pools that initially test above threshold, the 

minipool+algorithm may miss additional true positives that the minipool would not miss. In 

the archived samples cohort, all but one sample was missed at the individual, sequential 

testing stage. Further, in the samples obtained in real-time, the minipool strategy captured 6 

additional samples with virologic failure than did minipool+algorithm strategy; this would 

have contributed to the higher VF and lower RE seen. It is thus important that immunologic, 

growth, and other factors be examined to identify any samples with virologic failure that a 

testing strategy could miss.

To our knowledge this study is one of the first to perform pooled VL testing in a real-time, 

clinical management setting to confirm virologic failure in children in a resource-limited 

setting. In addition to evaluating a minipool+algorithm strategy, we also assessed a minipool 

testing strategy. While the minipool+algorithm testing strategy had higher relative 

efficiency, use of this strategy may lead to delay in VL results for individual samples in the 

pool. In a laboratory that performs VL testing on a routine basis, for example at least 3 days 

per week typical of a large busy lab, the minipool+algorithm strategy could be suitable as 

the turn-around time for testing is shorter and confirmatory VL results for an individual may 

be available within 2 to 3 weeks. However, in many smaller settings samples accrue more 

slowly, and a minipool testing strategy with shorter turnaround time may be more feasible.

Our study however did include a number of limitations. First, samples obtained in real-time 

were from children attending the clinic for ART monitoring, therefore samples were taken at 

varying lengths of time after ART initiation. Pooling and testing for VL according to time 

since ART initiation can be more efficient: time points with lower prevalences of virologic 

failure will yield more pools falling below the limit of detection, and thus require fewer tests 

of individual samples. However, this pooling of samples with varying times since ART 

initiation is likely to arise in smaller lab settings.

Second, for archived samples under the minipool+algorithm pooling strategy, samples from 

pool results above the threshold limit were tested individually using the Abbot™ Real-Time 

HIV-1 assay. However, individual results previously obtained in our collaborator’s 

laboratory and used to assess negative predictive value were tested using a Gen-Probe 

HIV-1 VL assay. Thus, the NPVs reported in our study represent both the shortcomings of a 

pooled VL testing strategy and use of different assays for viral load testing. Further, we 

could not calculate NPV of the minipool testing strategy used for samples obtained in real-

time. However, under a minipool testing strategy that tests all individual samples from 

positive pools, the source of undetected true positives arises only from pools that test below 

threshold.

Another limitation of our study is that we only used the minipool and minipool+algorithm 

strategies for pooled VL testing and there is a possibility that under certain conditions there 

may be other testing strategies that might be more efficient. A recent study conducted in 

adults on ART in a low-resource setting employed the matrix strategy, and found that with a 

prevalence 22% of virologic failure in the population the strategy was cost-effective and 
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saved more than 33% of the VL assays27. However, implementation of a matrix strategy is 

more complex and can increase the necessary technician time. Further exploration is needed 

in order to compare the performance of a matrix strategy to the strategies examined here.

In this study in children from a resource-limited setting, we demonstrated that pooled HIV-1 

RNA VL testing using the minipool+algorithm strategy to resolve positive pools, can reduce 

the cost of monitoring for virologic failure by up to a quarter compared with individual VL 

testing. This efficiency was demonstrated in our archived samples from pediatric HIV-1 

infected population with ~14% virologic failure, and was accompanied by a high negative 

predictive value. Moreover, while the minipool strategy for pooled VL testing is an 

appealing approach in real-time for clinical management, our study showed that use of 

minipool strategy was not efficient. Hence, with the use of pooled VL testing with a 

minipool+algorithm strategy and employment of low-cost technologies for VL assays, 

HIV-1 VL monitoring may become more accessible for low resource-settings. More 

research is needed to refine these methods toward achieving greater efficiency and 

simplicity.

Acknowledgements

The parent study was funded by NIH-Fogarty grants R01 D43-TW000007 and R01 TW007632. Antiretrovirals for 
the KNH HIV clinic was funded through CDC PEPFAR grants to the University of Nairobi (CCU 024513 CDC 
2004–2010, and 5U2GPS002182 CDC 2010–2011). The present study was supported by the U.S. President’s 
Emergency Plan for AIDS Relief (PEPFAR) and the NIH Office of AIDS Research, through supplemental funding 
of NIH grant 3R01 TW007632-05S1.

The authors thank and appreciate the assistance provided by Susanne May in the initial discussion and design of the 
study. The authors thank the clinic team, laboratory staff and data management team in Nairobi, Kenya for their 
participation and cooperation; the Pediatric Molecular Biology Laboratory at Department of Pediatrics, University 
of Nairobi for performing the VLs; and Barbara Lohman-Payne for her helpful discussion and scientific output 
throughout the study. Support for statistical analysis was provided by the University of Washington Center For 
AIDS Research (P30 AI027757), an NIH-funded program. Most of all we thank all the children and their caregivers 
who participated in the study.

References

1. National AIDS Control Council. United Nations General Assembly Special Session on HIV and 
AIDS. 2010 Country Report Kenya. Available at: http://data.unaids.org/pub/Report/2010/
kenya_2010_country_progress_report_en.pdf.

2. Sabin CA, Smith CJ, d'Arminio Monforte A, et al. Response to combination antiretroviral therapy: 
variation by age. AIDS. 2008 Jul 31; 22(12):1463–1473. [PubMed: 18614870] 

3. Sigaloff KC, Calis JC, Geelen SP, van Vugt M, de Wit TF. HIV-1-resistance-associated mutations 
after failure of first-line antiretroviral treatment among children in resource-poor regions: a 
systematic review. Lancet Infect Dis. 2011 Oct; 11(10):769–779. [PubMed: 21872531] 

4. van Rossum AM, Fraaij PL, de Groot R. Efficacy of highly active antiretroviral therapy in HIV-1 
infected children. Lancet Infect Dis. 2002 Feb; 2(2):93–102. [PubMed: 11901656] 

5. Obimbo EM, Wamalwa D, Richardson B, et al. Pediatric HIV-1 in Kenya: pattern and correlates of 
viral load and association with mortality. J Acquir Immune Defic Syndr. 2009 Jun 1; 51(2):209–
215. [PubMed: 19504753] 

6. Wamalwa DC, Farquhar C, Obimbo EM, et al. Early response to highly active antiretroviral therapy 
in HIV-1-infected Kenyan children. J Acquir Immune Defic Syndr. 2007 Jul 1; 45(3):311–317. 
[PubMed: 17356470] 

Chohan et al. Page 9

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2014 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://data.unaids.org/pub/Report/2010/kenya_2010_country_progress_report_en.pdf
http://data.unaids.org/pub/Report/2010/kenya_2010_country_progress_report_en.pdf


7. Ciaranello AL, Chang Y, Margulis AV, et al. Effectiveness of pediatric antiretroviral therapy in 
resource-limited settings: a systematic review and meta-analysis. Clin Infect Dis. 2009 Dec 15; 
49(12):1915–1927. [PubMed: 19916798] 

8. Sutcliffe CG, Scott S, Mugala N, et al. Survival from 9 months of age among HIV-infected and 
uninfected Zambian children prior to the availability of antiretroviral therapy. Clin Infect Dis. 2008 
Sep 15; 47(6):837–844. [PubMed: 18680417] 

9. Kantor R, Diero L, Delong A, et al. Misclassification of first-line antiretroviral treatment failure 
based on immunological monitoring of HIV infection in resource-limited settings. Clin Infect Dis. 
2009 Aug 1; 49(3):454–462. [PubMed: 19569972] 

10. Orrell C, Harling G, Lawn SD, et al. Conservation of first-line antiretroviral treatment regimen 
where therapeutic options are limited. Antivir Ther. 2007; 12(1):83–88. [PubMed: 17503751] 

11. Wilson D, Keiluhu AK, Kogrum S, et al. HIV-1 viral load monitoring: an opportunity to reinforce 
treatment adherence in a resource-limited setting in Thailand. Trans R Soc Trop Med Hyg. 2009 
Jun; 103(6):601–606. [PubMed: 19110288] 

12. Calmy A, Ford N, Hirschel B, et al. HIV viral load monitoring in resource-limited regions: 
optional or necessary? Clin Infect Dis. 2007 Jan 1; 44(1):128–134. [PubMed: 17143828] 

13. Phillips AN, Pillay D, Miners AH, Bennett DE, Gilks CF, Lundgren JD. Outcomes from 
monitoring of patients on antiretroviral therapy in resource-limited settings with viral load, CD4 
cell count, or clinical observation alone: a computer simulation model. Lancet. 2008 Apr 26; 
371(9622):1443–1451. [PubMed: 18440426] 

14. Gupta RK, Hill A, Sawyer AW, et al. Virological monitoring and resistance to first-line highly 
active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a 
systematic review and meta-analysis. Lancet Infect Dis. 2009 Jul; 9(7):409–417. [PubMed: 
19555900] 

15. Hosseinipour MC, van Oosterhout JJ, Weigel R, et al. The public health approach to identify 
antiretroviral therapy failure: high-level nucleoside reverse transcriptase inhibitor resistance 
among Malawians failing first-line antiretroviral therapy. AIDS. 2009 Jun 1; 23(9):1127–1134. 
[PubMed: 19417582] 

16. Keiser O, Tweya H, Boulle A, et al. Switching to second-line antiretroviral therapy in resource-
limited settings: comparison of programmes with and without viral load monitoring. AIDS. 2009 
Sep 10; 23(14):1867–1874. [PubMed: 19531928] 

17. Kumarasamy N, Madhavan V, Venkatesh KK, et al. High frequency of clinically significant 
mutations after first-line generic highly active antiretroviral therapy failure: implications for 
second-line options in resource-limited settings. Clin Infect Dis. 2009 Jul 15; 49(2):306–309. 
[PubMed: 19522657] 

18. Petersen ML, van der Laan MJ, Napravnik S, Eron JJ, Moore RD, Deeks SG. Long-term 
consequences of the delay between virologic failure of highly active antiretroviral therapy and 
regimen modification. AIDS. 2008 Oct 18; 22(16):2097–2106. [PubMed: 18832873] 

19. Davies MA, Moultrie H, Eley B, et al. Virologic failure and second-line antiretroviral therapy in 
children in South Africa--the IeDEA Southern Africa collaboration. J Acquir Immune Defic 
Syndr. 2011 Mar 1; 56(3):270–278. [PubMed: 21107266] 

20. World Health Organization. Recommendations for a public health approach. Geneva: WHO; 2010. 
Antiretroviral therapy for HIV infection in infants and children: towards universal access. revision. 
Available at: http://apps.who.int/medicinedocs/documents/s18809en/s18809en.pdf. [Accessed 
2010]

21. Davies MA, Boulle A, Eley B, et al. Accuracy of immunological criteria for identifying virological 
failure in children on antiretroviral therapy - The IeDEA Southern Africa Collaboration. Trop Med 
Int Health. 2011 Nov; 16(11):1367–1371. [PubMed: 21834797] 

22. Busch MP, Glynn SA, Stramer SL, et al. A new strategy for estimating risks of transfusion-
transmitted viral infections based on rates of detection of recently infected donors. Transfusion. 
2005 Feb; 45(2):254–264. [PubMed: 15660836] 

23. Patterson KB, Leone PA, Fiscus SA, et al. Frequent detection of acute HIV infection in pregnant 
women. AIDS. 2007 Nov 12; 21(17):2303–2308. [PubMed: 18090278] 

Chohan et al. Page 10

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2014 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://apps.who.int/medicinedocs/documents/s18809en/s18809en.pdf


24. Pilcher CD, McPherson JT, Leone PA, et al. Real-time, universal screening for acute HIV infection 
in a routine HIV counseling and testing population. JAMA. 2002 Jul 10; 288(2):216–221. 
[PubMed: 12095386] 

25. May S, Gamst A, Haubrich R, Benson C, Smith DM. Pooled nucleic acid testing to identify 
antiretroviral treatment failure during HIV infection. J Acquir Immune Defic Syndr. 2010 Feb 1; 
53(2):194–201. [PubMed: 19770802] 

26. Smith DM, May SJ, Perez-Santiago J, et al. The use of pooled viral load testing to identify 
antiretroviral treatment failure. AIDS. 2009 Oct 23; 23(16):2151–2158. [PubMed: 19730348] 

27. Tilghman MW, Guerena DD, Licea A, et al. Pooled nucleic acid testing to detect antiretroviral 
treatment failure in Mexico. J Acquir Immune Defic Syndr. 2011 Mar 1; 56(3):e70–e74. [PubMed: 
21124228] 

28. Wamalwa DC, Farquhar C, Obimbo EM, et al. Medication diaries do not improve outcomes with 
highly active antiretroviral therapy in Kenyan children: a randomized clinical trial. J Int AIDS Soc. 
2009; 12(1):8. [PubMed: 19549342] 

29. Wamalwa DC, Obimbo EM, Farquhar C, et al. Predictors of mortality in HIV-1 infected children 
on antiretroviral therapy in Kenya: a prospective cohort. BMC Pediatr. 2010; 10:33. [PubMed: 
20482796] 

30. Emery S, Bodrug S, Richardson BA, et al. Evaluation of performanceof the Gen-Probe human 
immunodeficiency virus type 1 viral load assay using primary subtype A, C, and D isolates from 
Kenya. J Clin Microbiol. 2000 Jul; 38(7):2688–2695. [PubMed: 10878065] 

Chohan et al. Page 11

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2014 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Strategy for pooled HIV-1 VL testing for all samples. The minipool and minipool+algorithm 

testing strategies have been previously described by May et al25.

*300 c/ml is the pool threshold of interest for pool size of 5 and definition of virologic 

failure as viral load > 1500 c/ml
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Table 1

Enrollment characteristics and ART regimens of children providing samples for pooled VL testing.

Enrollment characteristics* Archived samples
(N=100)
N (%) or

Median (IQR)

Real-time samples
(N=125)
N (%) or

Median (IQR)

Age (years) 4.7 (2.7, 6.6) 5.9 (4.0, 7.9)

Male 56 (56) 75 (60)

Height (cm) 96 (83, 108) 111 (100, 121)

Weight (kg) 14 (10, 17) 19 (15, 22)

CD4%a 7 (4, 13) N/A

CD4 countb 352 (102, 659) 843 (470, 1167)

HIV-1 viral load (copies//ml)c 872,400 N/A

(287,900 – 2,822,300)

HAART regimen

   NVP/3TC/AZT 52 (52) 29 (23)

   NVP/3TC/ABC 0 27 (22)

   NVP/3TC/D4T 12 (12) 8 (6)

   EFV/3TC/AZT 23 (23) 26 (21)

   EFV/3TC/ABC 0 30 (24)

   EFV/3TC/D4T 9 (9) 2 (2)

   LPVr//3TC/AZT 0 1 (1)

   LPVr//3TC/ABC 0 1 (1)

   3TC/AZT/ABC 2 (2) 1 (1)

   3TC/D4T/ABC 1 (1) 0

   3TC/AZT/NFV 1 (1) 0

*
Children in the archived samples cohort were initiated on ART soon after enrollment, while children in the real-time samples cohort had been on 

ART for 4 to 72 months at the time of enrollment.

a
CD4% results were available from N=88 children in the archived samples cohort, and were not collected from children in the real-time samples 

cohort.

b
CD4 count results were available from N=86 children in the archived samples cohort, and for N=20 children in the real-time samples cohort.

c
HIV-1 VL results were available from N=88 children in the archived samples cohort, and were not collected from children in the real-time 

samples cohort.
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Table 3

NPV of Minipool+algorithm strategy for pooled viral load testing of Archived samples.

Time since ART
initiation

No. samples
without VF

No. samples
with individual

results*

No. confirmed
without VF

NPV
(95% CI)

Overall 216 179 158 88 (83–93)

6 month 43 41 39 95 (83–99)

1–2 years 44 41 37 90 (77–97)

2–3 years 42 33 28 85 (68–95)

3–4 years 43 30 25 83 (65–94)

4–5 years 43 34 29 85 (69–95)

*
Individual sample VL results were available from a prior study.
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